Find The Derivative Or The Integral Of The Given Function:, 1. Y= -7x2074 - 3\Xb3221ax, 2. Y= \Xb3221a9x\Xb2+10x-1

Find the derivative or the integral of the given function:

1. y= -7x⁴ - 3³√x
2. y= ³√9x²+10x-1

1. y = -7x^{4} - 3\sqrt3{x}

Derivative:

\frac{dy}{dx}  = -7x^{4} - 3\sqrt3{x}

-28x^{3} - 3\frac{dy}{dx}(x)^{\frac{1}{3}}

-28x^{3} - 3(\frac{1}{3})(x)^{\frac{-2}{3}}

-28x^{3} - \frac{1}{\sqrt3{x^{2}}}

Antiderivative:

(-7x^{4} - 3\sqrt3{x}) dx

\frac{-7}{5}x^{5} - 3(x)^{\frac{1}{3}}

\frac{-7}{5}x^{5} - 3 (\frac{3}{4})(x)^{\frac{4}{3}}

\frac{-7}{5}x^{5} - \frac{9}{4}x^{\frac{4}{3}} + C

2. y = \sqrt3{9x^{2}} + 10x - 1

Derivative:

\frac{dy}{dx}  = \sqrt3{9x^{2}} + 10x - 1

(9x^{2})^{\frac{1}{3}} + 10x - 1

\frac{1}{3}(9x^{2})^{\frac{-2}{3}} + 10

\frac{1}{3\sqrt3{(9x^{2})^{2}}} + 10

(Note: I am not sure on this part.)

Antiderivative:

(\sqrt3{9x^{2}} + 10x - 1) dx

(9x^{2})^{\frac{1}{3}} + 10x - 1

(\frac{1}{18x})(\frac{3}{4})(9x^{2})^{\frac{4}{3}} + 5x^{2} - x + C

\frac{1}{24x}(9x^{2})^{\frac{4}{3}} + 5x^{2} - x + C


Comments

Popular posts from this blog

Introduce The Term Atmosphere.

A Function F Is Given By F(4x-1) = 4x2+5. Evaluate F(15).

Who Were The Two Scientists Who Proposed The Theory Of Seafloor Spreading In The Early 1960s?, A. Charles Darwin And James Hutton, B. Harry Hess And R